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Abstract-The problem of a spherical cavity which is embedded in a linear. fluid-infiltrated. elastic porous
medium and which is subjected to the sudden quasi-static application of a stress at the cavity boundary is
solved. It is demonstrated that the deformation of the cavity is homogeneous regardless of the boundary
condition imposed on the pore fluid at the cavity wall. For the case in which the pore pressure vanishes at
the cavity wall. the time dependence of the cavity strain is evaluated explicitly and is shown to vary
between the limits of the ordinary linear elastic response based on the short-time (undrained) and on the
long-time (drained) properties of the fluid-saturated solid. The results are then used to obtain a relation
between the uniform stress or strain applied at infinity and the stress and strain in a highly permeable.
possibly non-linear spherical inclusion. The application of this relationship to a study of earthquake
premonitory processes based on the deformation of a rock mass with a spherical weakened zone is
outlined. It is argued that the fluid coupling effects serve to stabilize the weakened rock against rapid
fracture. and give rise instead to a precursory period of accelerating but initially quasi-static straining which
ultimately leads to dynamic instability.

INTRODUCTION

Fluid-infiltration of an otherwise elastic porous solid introduces a time dependence into the
response to applied loads. For deformation which is much slower than the characteristic time
for the diffusion of pore fluid, the local pore fluid pressure in each material element remains
constant and the response is said to be drained. Conversely, when load alterations are rapid by
comparison to the diffusion time, the local fluid mass content in each material element remains
constant. and the response is undrained and elastically stiffer than the drained response. This
time dependence has been proposed as a possible factor in accounting for several features of
earth-faulting processes: migration of aftershocks[l,2], stabilization of incipient faulting [3],
fault creep[4), and premonitory events for earthquakes [5-7). It is also relevant to a wide range
of geotechnical problems including hydraulic fracture [e.g. 3, 8] and soil consolidation [9,10).

An exceptional instance in which the response is time-independent even in the presence of
fluid-infiltration is the quasi-static shear of a homogeneous body. If, however, the body contains
a cavity or other inhomogeneity, the response is time-dependent. In this paper, we will examine
this feature in detail by deriving the solution for the time-dependent strain of a spherical cavity
in a fluid-infiltrated elastic porous solid subjected to a suddenly applied shear stress at the
cavity boundary. In the course of obtaining the full solution, we will demonstrate that the cavity
deforms homogeneously. a result which is analogous to that of Eshelby [II] for the ellipsoidal
inclusion embedded in an elastic matrix. The particular relevance of this solution is that it
enables us to write an expression which. again analogously with the results of Eshelby[ll].
relates in a simple way the stress and strain in a spherical inhomogeneity to the applied far-field
stress and strain.

By using the results of Eshelby, Rudnicki [12, 13) has investigated models for the inception
of earth faulting in which the inhomogeneity is considered to be a zone of material weakened
by fissuring and past faulting. The present results make it possible to include in these
considerations the time-dependent response of the elastic material surrounding the weakened
zone. Our analysis suggests that this time-dependent response may be an important factor in
leading to an earthquake precursory period of accelerating but initially stable and quasi-static
straining prior to instability.

We begin by reviewing the governing constitutive relations and field equations. Then. after
deducing the form of the solution from considerations of symmetry and linearity. we establish
directly its spatial dependence. Although the solution for the full time dependence involves
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much numerical computation, the time dependence of the strain of the cavity boundary, which
is the feature of the solution of greatest interest for applications, will be evaluated explicitly.

GOVERNING EQUATIONS

The constitutive relations for a linear fluid-infiltrated solid were established by Biot [IOJ. In
order to effect a formulation in terms of easily interpretable parameters, Rice and Cleary [3]
exploited the observation that the response of the fluid-saturated solid has the form of the usual
linear elastic response in the limits of drained and undrained behavior. For an isotropic linear
elastic material the expression for the stress (J'jj depends on the displacement gradient Uj) =:

au;/aXj) and the alteration of pore fluid pressure p as follows:

(I)

where A and f.L are the Lame moduli appropriate for drained deformation and 8jj is the
Kronecher delta; (= I - K/K~, where K( = A+ 2f.L/3) is the drained bulk modulus and K~ may,
in certain circumstances, be identified with the bulk modulus of solid constituents, but, more
generally, must be regarded as an empirical constant (3). A second constitutive relations is
needed for the alteration of fluid mass (per unit volume) m from its reference value mo, and this
may be put in the form

(2)

where Po is the reference value of the density of the homogeneous pore fluid and Au is the value
of the Lame constant for undrained deformation. The latter satisfies 00 > Au > A, where the
upper limit is attained for separately incompressible constituents. For undrained deformation
III == 1110 and inserting

into (1) verifies that Au is the appropriate Lame modulus in that case. As suggested in the
Introduction, shear of a homogeneous linear isotropic body induces no pore pressure; hence,
the shear modulus f.L has the same value for drained and undrained deformation.

In order to complete the formulation of governing equations, we require that the usual
equation of stress equilibrium in the absence of body forces be satisfied, i.e.

(J'ij.j =0, (3)

and further. that mass conservation be satisfied for the diffusing pore fluid. As shown in [31.
when the diffusion process obeys Darcy's relation, and when the equilibrium equations and
constitutive relations like (l,2) are used to simplify the result, mass conservation implies that m
must satisfy the diffusion equation

2 I amV m=-­
c at'

(4)

where C IS the diffusivity and V2( ... ) =' a2( . . .)/aXkaXk. In this development, Darcy's law

relates the mass flow rate in the Xi direction, qi (per unit area), to the gradient of pore pressure
(in the absence of body force), where K is a permeability which is often given as K = kly with k
in units of area and y the fluid viscosity. The ratio c/ K is expressible in terms of elastic moduli
in the form
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where the term in brackets is the ratio of the moduli governing one dimensional straining under
drained and undrained conditions. Other equivalent forms for this expression are

available [3,10].
Instead of the fluid mass content m it is more convenient to use

M = (p + (Au - A)uk.k

which from (2) is proportional to m - mo, the alteration of fluid mass content, and thus from (4)
satisfies the same diffusion equation, i.e.

(5)

We note that M has physical units of stress and that in terms of M, eqn (I) becomes

(6)

Substituting (6) into the equilibrium eqn (3) yields

(7)

which can be recognized as the Navier equations of elasticity with an additional term due to the
coupling of the deformation with the pore fluid diffusion.

We wish to solve (5) and (7) subject to a traction derived from a deviatoric stress field Sij
(Skk =0) which is suddenly applied at t =0 to the boundary of a spherical cavity of radius a.
(This problem arises in an obvious way, by superposition, when the actual loading is instead the
sudden imposition of a remotely uniform deviatoric stress field Sij on an infinite body containing
a spherical cavity. We note that the corresponding problem for purely isotropic remote stress
(which is a spherically symmetric problem) has been solved by Rice and Cleary [3J). The
alteration of pore fluid pressure is required to vanish at the cavity boundary (although it will be
seen that the case of an impermeable boundary is easily treated as well). Thus, the boundary
conditions are

Xj(l'ij = - XSij}r (XX)112 = at> 0
p=O 'j', (8)

where the component of the unit normal to the cavity boundary is simply x;/a. Because the
instantaneous response at the time of load application (t =0) will be undrained, the initial
condition is

M(Xi, t := 0) := O. (9)

SOLUTION
Because of the spherical shape of the cavity and the isotropy of the material, the

displacement vector u can be a function only of the position vector x, the applied stress tensor
S, and of scalar quantities such as time t and invariants formed from x and S, (e.g. r = (X·X)II2.

x'S'x, etc). Furthermore, because all the equations are linear, the dependence on the applied
stress must be linear as well. From these requirements, we could deduce the form of u by using
the canonical representation theorems of Wineman and Pipkin [l4], but in the present case. it is
sufficient simply to observe that the only vector quantities on which u can depend are X'S (with
components XkSk;) and x. Therefore, the displacement must have the form

(10)

where the functions Flo F2 are to be determined. Note that the quantity X'S'X is a spherical
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harmonic of degree two (i.e. a harmonic function which is homogeneous of degree two in x) and
the complementary harmonic of negative degree is r~5(x·S·x). The latter is employed in the
classical elasticity solution for a spherical cavity in an infinite body subjected to uniform shear
at infinity[15].

A more convenient representation of u, which is equivalent to (10), is in terms of
displacement potentials

u=V4>+xt/J (11)

where 4> = r-\x,S'x)F3(r,t) and t/J = r~5(x'S'x)F4(r,t) and (V); := al ax;. Because the displacement
must decay at large distances from the cavity, the r- 5 has been written explicitly (though at no
expense in generality), with the expectation that the solution will involve the same spherical
harmonic r-5(x·S·x) which appeared in the corresponding problem of classical elasticity.
Considerations of symmetry and linearity also indicate that M be written as

M = r-5(x'S'x)g(r,t) (12)

where the function g(r,t) is to be determined.
By using the representations (11,12) we can reduce eqn (7) to two simple equations whose

solutions can be obtained by inspection. Substituting (II) into (7) yields

(13)

If we form the curl of (13), the gradient expression in the first term vanishes identically and the
remainder is

the solution of which is easily shown to satisfy

(I4a)

If (l4a) is used in (I3), integration of the remaining term yields

(I4b)

where the integration constant may be taken as zero.
The only solution of eqn (I4a) which is compatible with the form of t/J following (II) and

which decays for large r is

(15)

where A is at most a function of time.
Substituting (IS) and the expression (12) for Minto (l4b) yields

The solution of (16) is

_ -5 [ (Au - A) /L -3] (x·S·x)
4> - Br (x'S'x) + (9A + 14/L /(r,t) + '3 Ar (Au + 2/L)'

(16)

(17)

The first term is the appropriate solution to the homogeneous equation by the same reasoning as
employed in the solution for t/J, and B may be a function of time. The first and second terms of
the particular solution correspond to the respective terms on the right hand side of eqn (16).
The constant multiplying {(r,t) has been chosen for convenience in later calculations and, as
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may be verified by substitution of this expression for 4> into (16), the function !(r,t) is related to
g(r,t) of (12) by

/ "+6r--I/ -6.!.( 6/,)==(9A+14~) ( t)-5r ar r (Au _ A) g r, r

where f' := a/Iar. Integration of this equation yields

- (9A + 14~) f' -6 fP
!(r,t) - (Au - A) '" P a ~(~,t)d~dp. (18)

Although g( r,O is as yet undetermined, the equation which g( r.n satisfies is obtained by
substituting the expression (12) for M into the diffusion equation (5), and is

(19)

SUbject to initial conditions g(r,t == 0):::: 0, r> a. We will postpone the solution of (19) and first
consider the application of the boundary conditions to eliminate A and B.

APPLICATION OF BOUNDARY CONDITIONS AND DEFORMATION OF THE CAVITY SURFACE

The evaluation of the boundary conditions (8) to determine A and B in (15,17) and the
boundary condition on g( r.t) is a long but straightforward algebraic calculation which we will
merely outline. By using (11), we can express the boundary conditions (8) in terms of the
displacement potentials as follows:

X·fT·- == II. [x,..I. ,,+ -2'(a 2,1,. + xx··I, .)]"J ".... l'P ,IJ 'P.1 J I'P,I

+xj(Au V2t/J - M + ~"') == - XiS;j, r == a,

r== a.

(20a)

(20b)

The desired conditions are then obtained by substituting (12), (15), and (17) into (20a) and (20b),
using (8), and rearranging. We will consider each boundary condition separately.

The traction condition (20a) involves terms multiplying Xj(x'S'x) and x'S, and because of the
differing orders of x in these expressions, their coefficients must vanish separately. Thus, from
(20a) we obtain two equations which are solved for A and B in terms of {(a,t)

A
15a 3(A u + 2~)
2~(9'\u + 14~) [1 + b /(a,t)]

B == Aa2/5 (21)

where we have introduced the abbreviation b == 4p.(Au - '\)/[(9'\ + 14~) (Au + 2~)1. If these are
used in t/J and '" to compute from (11) the expression for the displacement of the cavity
boundary. the result is simply

where

r=a, (22)

H(t) == 3Au + 8p. + !(a,t) [ 3A + 8~ 3Au + 8p. ].
9Au + 14p. 9A + 14p. 9Au + 14~

Equation (22) demonstrates that independently of the boundary condition on the pore fluid.
points along the cavity surface displace as if the cavity interior had undergone a homogeneous
but time-dependent strain. This is an important feature of the solution. analogous to that
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observed by Eshelby [II) in the case of ordinary elasticity, and we shall exploit it later. We can
express H(t) in a more transparent form by recognizing that the expression

3A + 8JL _ 4 - 51'
9A + 14JL -7-51"

(where I' is Poisson's ratio for drained response), is the factor which appears in the solution of
Eshelby for the spherical inclusion, Evidently, f(a,t) increases from zero to unity as the
response relaxes from the undrained conditions induced by sudden application of the stress to
drained conditions at long times. Correspondingly, H(t) increases from (4 - 51'u )/(7 - 51'u) at
t = 0+ to (4 - 5/1)/(7 - 5/1) at t = 00, where I'u is Poisson's ratio for undrained response and
1':0;; I'u :0;; 1/2. For values of Poisson's ratio representative of porous but coherent rocks such as
sandstones, say /I = 0.2 and I'u = OJ, H(t) increases by about 10% from 0.45 to 0.50. On the
other hand, for /I = 0.2 and I'u = 0.4, which may be more representative of heavily fissured and
jointed rock, H(t) increases by 25%, from 0.40 to 0.50.

In the next section, we will determine the time-dependence of f(a,t) and, thus, the
time-dependence of the cavity strain by solving eqn (19) for g(r,t). The condition on g(a,t).
corresponding to zero pressure alteration at the cavity boundary, is obtained from (20b) after
using the expressions (2 I) for A and B;

3 (Au - A) { f }
g(a,t) = - 151]a (9A + 14JL) 1+ b (a,t) • (23)

where 1] = (Au + 2JL)(9A + 14JL)/(A + 2JL)(9Au + 14JL). We note from eqn (18) that f(a.t) is itself
defined by a double integral involving the function g(r,t), so the "boundary" condition of eqn
(23) is not of a simple kind. It is, nevertheless. typical of those encountered in other coupled
problems is porous media (see. e.g. the solutions of Rice and Cleary [3] for radially symmetric
problems of cylindrical and spherical cavities).

TIME-DEPENDENCE OF THE CAVITY STRAIN

We wish to solve eqn (19) subject to the boundary condition (23) and the initial condition

g(r,t = 0) = 0

which follows from (9). the condition that the response is undrained at the instant of load
application. For this purpose we introduce the Laplace transform on time

with inversion by the Bromwich integral [16]

where i"'" (- I )1/2 and CB is chosen to be larger than the real part of any singularities in the
complex s-plane. Applying the Laplace transform to eqn (19) and the boundary condition (23)
yields

(
d2 4 d S) A

-,----- g(r;s)=O,
dr rdr c

A( .)_ 15 3 (Au-A) {-I bfA( . }
g a, s - - a 1] (9A + 14JL) s + a, s) ,

(24a)

(24b)

where band 1] have been defined following (21) and (23), respectively. By making the change of
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variables r y(cls) R and writing g(r; S)=R 512G(R; s), we can reduce (24a) to a canonical
form of Bessel's equation [17]

where the prime denotes differentiation with respect to R. Thus, the solution for g(r; s) which
decays for large r is

(25)

where K 5I2(R) is the modified Bessel function of order 5/2 and C(s) is to be determined by the
boundary condition. The Bessel functions of half-integer order can be expressed in terms of
elementary functions[17] by noting that

and using the recurrence relation

(26)

In order to apply the boundary condition (24b), we express j(a; s) in terms of the solution for
g(a; s) by using (18), (26), and the following derivative recurrence relations [17]:

d
dz [zlLK,,(z)] =- Z"K,,~I(Z),

d
d [z-"K,,(z)] = - z-lLK,,+I(Z),
Z

The result is

fA( • ) _ C(s)(9A +14/L) 312K ( )
a,s --W (Au-A) q 312q

where q == a(slc)ll2. Substitution of (27) and (25) into (24b) and the use of (26) yield

(27)

(28)

The full time dependence of the solution everywhere outside the cavity could be determined
by using (28) in (25) and inverting the transform as a function of position. Our main interest,
however, is in the time-dependence of the cavity strain, and it is evident from (22) that for this
we need only to perform the single inversion for f(a,t). Substitution of (28) into (27) gives

By factoring the quadratic expression in the denominator, we can rearrange this into terms
whose inversions can be found in standard tables of Laplace transform pairs (e.g. [17J). The
result is

(29)
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where (J == ctla 2
, [m{...} denotes the imaginary part of {...}, 2{3 == 311 i[311(4 - 311 Hli2

, and
erfc(z) is the complementary error function

erfc(z) == 1- erf(z) = Jrr Loo

e- x1 dx.

A plot of f(a,t) for two values of 11 is given in Fig. 1. By the expression for H(t) following (22),
this same plot represents the time-dependent part of the cavity deformation. (For numerical
evaluation, it is more convenient to use the form of !(a,t) which results from direct inversion of
the transform by contour integration; this calculation is outlined in the Appendix). If A == 0 and
the constituents are separately incompressible (Au = (0), then 11 == 7/9; if A= Au, then 11 = 1.

Thus, the cases plotted in Fig. 1 span the practical range of 11 and they indicate that f(a,t) is
relatively insensitive to values of the elastic moduli. Fig. 1 also demonstrates that !(a,t)
approaches unity, its value for drained response, very rapidly: for (J = 0.6, f"'" 0.90.

Asymptotic expressions of (29) for very long and short times can be obtained easily by using
the standard expressions [17]:

f)
I __I {I

er c(z == ZVrre' -

and

Thus, for short times (J ~ 1,

and for long times ()> 1,

In Fig. 2 these expansions are compared with the exact values. Unfortunately, they are good
approximations only in a limited range.

Although we have considered the case in which the pore pressure vanishes at the cavity
boundary because of its greater potential for applications, we note that the problem in which
the cavity wall is impermeable may also be treated. In this case, the boundary condition (20b) is

l~

Displacement ui l
Sij Xi { 3Xu + Sf/- [3X + Sf/- 3X u+Sf/- J}j

• -- +f(a t) --- - ~-:-:-
f/- 9Xu+14f/- • 9X+14f/- 9Xu +14f/-

on cavity boundary r' o. i

[,. ::::'::::~iL"~"""",, j.
0.2 0.3 0.4 0.5 0.5 1.0 1.5 2.0°0 01

f {o,tl
1.0 I---'---r---r---..,..----r--~

0.8

0.6

0.2

0.4

Fig. I. Time-dependent factor I(a. t) in the expression for displacement of the boundar~' of a spherical cavity,
maintained at zero pore pressure and subjected to suddenly imposed surface tractions derivable from a
deviatoric stress tensor Si;. The Lame moduli for drained conditions are Aand /.6 ; for undrained conditions they

are Au and p.; c is the pore fluid diffusivity.
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Fig. 2. Comparison of small- and large-time asymptotic expansions with exact calculation (see caption of
previous figure).

replaced by the requirement of no fluid mass flow across the cavity boundary,

ap
Xjqi = POKXi aXj = 0, r= a,

where we recall that Xi is the component of the normal to the cavity boundary. The resulting
solution for f(a; s) is

While we have not worked out the details of the time-dependence implied by this expression, we
note from its limiting values that it too corresponds to a transition from the short-time,
undrained to the long-time, drained elastic response of the cavity wall as a function of the time
parameter (J = ella 2

•

DEFORMATION OF A SPHERICAL INCLUSION
We now consider the problem of a possibly nonlinear spherical inclusion which is embedded

in a linear, porous, fluid-infiltrated material of the type just considered, and which is deformed
by uniform stresses and strains at infinity. Equation (22) and related expressions from [3] will
be used to develop a relationship between the stress and strain in the inclusion and the far-field
stress and strain. In the next section we will outline the application of this relationship to the
study of mechanisms by which pore fluid effects could lend initial stability to earth faulting.

We begin by repeating that eqn (22) demonstrates that the cavity boundary deforms as if the
interior had undergone the homogeneous deviatoric strain Ejj, where

Further, if some general time-dependent stress field Sjj(t) loads the cavity surface then, by
superposition,

(30)

where the superposed dot aenotes a time derivative and t is time.
The corresponding relation for volumetric strain may be taken from the radially symmetric

solution of Rice and Cleary [3] for a spherical cavity on the surface of which a total radial
compressive stress 0' is suddenly applied while, simultaneously, a pore pressure Po is applied at
the cavity wall. Their results show that for a given total stress 0' the radial displacement u at
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the cavity wall is independent of Po, and has the same form as in the classical elasticity solution,
namely

U :::: 3aaI4}L.

(This result is not cited explicitly in [3], It may be proved by evaluating the "hoop strain" u/G,

by using eqns (86,87) of [3] for the stresses and pore pressure at the cavity wall, and by using
these in the porous medium relation for strain, namely eqn (7) of [3]). Hence the cavity wall
deforms as if the interior had undergone a homogeneous volumetric strain e (i.e. one-third of
fractional increase in volume), and for a general time varying compressive stress aU) at the
cavity wall we have

}LeU) (3/4)aU) (31)

as the volumetric expression analogous to eqn (30).
Finally, the pressure Po imposed at the wall creates a pore-pressure distribution as given by Rice

and Cleary ([3], eqn 86). From that distribution we may calculate by Darcy's law the rate of fluid
mass outflow through the cavity wall as

47T'a 2q(a,t):::: - 47T'G 2poK ~ (a,t) =: 47T'poKa[1 +a/(7T'ct)I/2]po

for t > 0, where Po is applied at t:::: 0, q is the radial mass flux per unit area, and K is the
permeability coefficient introduced earlier. We define mby

so that mis the rate, per unit volume, at which the cavity acquires fluid mass. By combining the
last two equations we may solve for the function m corresponding to the suddenly applied
pressure Po. Then, by superposition, when an arbitrary pressure history p(t) is applied at the
cavity wall the mass accumulation rate per unit volume of cavity is

m(t) 3POK{ () ft a .( ')d'}-7 p t + _oo[7T'CU-t')]172P t t . (32)

Equations (30)-(32) have been derived here for a spherical cavity. However, because the
cavity wall deforms as if the interior had undergone homogeneous deformation, we may follow
the procedure of Eshelby[ll] and replace the cavity by an inclusion of any homogeneous
material, whether linear or non-linear, with the understanding that the inclusion will deform
homogeneously. Now, however, the stipulation that the inclusion be homogeneous also applies
to the pore-pressure in the inclusion. Although the pore-pressure cannot, in general, be
considered spatially uniform in the inclusion, this will be a good approximation if the inclusion
is very much more permeable than the surrounding material. Further, this approximation seems
appropriate for our intended applications, in which the inclusion is to represent a zone of
heavily fissured, previously faulted material. (Alternatively, although we have no application in
mind for it, the case of a non-fluid-infiltrated, impermeable inclusion could also be treated,
based on the solution discussed at the end of the previous section).

Suppose then that the material surrounding the inclusion is subjected to the remotely
uniform deviatoric stresses Sij, mean normal stress a"', and pore-pressure p"', whereas the
corresponding quantities within the inclusion are Sile, a mc and pmc. Let ei} be the deviatoric
strains and eOO the volumetric strain in the remote surroundings, and let e~'l" and einc be the
corresponding quantities in the inclusion. Then the field in the elastic porous material outside
the inclusion can, by superposition, be represented as the sum of the following: (i) a uniform
stress/pressure field Sij, a"', pOO with associated strains lEij, eOO, and (ii) fields which are identical
to those created by loading the wall of a spherical cavity with deviatoric stress Sij, compressive
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normal stress a, and pore pressure p given by

299

S Soo sine 00 inc
ij = ij - ij, a = a - a , (33)

with associated displacements of the cavity boundary that are consistent with deviatoric strains
E

ij and volumetric strain e of the cavity interior, which are

_ inc 00 _ inc 00

Eij - Eij - Eij, e - e - e . (34)

Of course, the responses of (34) must be related to the loadings of (33) by the expressions
(30,31) given earlier. This gives the following two "Eshelby relations" connecting the state
within the inclusion to that applied remotely:

/L [Eij<(t) - Eij(/)] = Lx H(t - I') [ Sij(tl) - s:nt')] d/',

Also, we may now identify m in (32) as the fluid mass content of the inclusion and write

(35)

(36)

(37)

Here we assume tacitly that when aX and pX vary with time they do so in such a way that moo is
constant; this is necessary because we have considered the surroundings of the inclusion to be
unbounded and to have a remotely uniform state.

Equations (35)-(37) suffice, in principle, as a formulation of the inclusion problem, for if
constitutive equations (not necessarily isotropic, linear, or elastic) are given for the inclusion
material. relating si't, a ine

, pine to Eiie
, eine

, In inc then eqns (35)-(37) become a system of integral and
albegraic equations enabling the calculation of the time dependent state within the inclusion when
the remote stresses Sij, aX, pX are specified. (Note that the quantities Eij and eX appearing in eqns
(35.36) are related by the usual elastic porous medium stress-strain relations to Sij, aX, pX).

DISCUSSION: PORE·FLUID EFFECTS IN THE STABILIZATION OF FAULTING
As a focus for discussion of possible pore-fluid effects in the inception of faulting, we adopt

a model introduced by Rudnicki[12] and analyzed by him for a solid without fluid effects. In
this model the zone which ultimately faults was represented as a weakened inclusion which
exhibited, because of previous faulting and fissuring, non-linear inelastic behavior while the
surrounding rock, which was stronger, responded in an essentially linear elastic fashion. The
weakened zone stress-strain relations were assumed to exhibit peak strengths followed by
strain softening and conditions were sought at which the steadily increasing remote shearing
stress caused a dynamic "runaway" instability of the inclusion material. Indeed, such strain
softening is representative of the failure of brittle rocks (see Jaeger and Cook[19]), although it
has been obscured in much of conventional testing by the instability that occurs very near peak
strength due to the high elastic compliance of standard testing equipment (see Section 6.13 of
[19]).

Consider, for example, the spherical inclusion shown in Fig. 3(a), and suppose that the
remote shearing stress TOO induces a pure shear stress Tine in the inclusion. Plots of shear stress
versus engineering shear strain yare shown for the surrounding material (linear, with TOO = /LY OO

)

and for the inclusion (non-linear) in the figure. We note further that an Eshelby relation
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Fig. 3(a). Shear of a non-linear spherical inclusion (representing a zone weakened by previous faulting) in an
unbounded linear material. The greater effective stiffness of the surroundings for rapid, undrained (vs slow,
drained) stress alterations means that the system is stabilized against instantaneous failure at point I. But the
system is "self driving" beyond point I and an initially quasi-static process of strain accumulation, accelerating
toward dynamic instability, occurs on time scale controlled by fluid diffusion. (b) "Seismic gap" zone

interpretation of inclusion model.

analogous to eqn (35) connects r'"C, inc to rOC, yOC, and this has the form

(38)

where it is evident that when fluid effects are negligible and the surroundings respond as if they
were drained, we have

~ = 2H(oo) = 2(3A + 8JL) = 2(4- 5v)
9A + 14JL 7-5v'

Equation (38) also applies for ellipsoidal inclusions and ~ becomes larger for increasing aspect
ratio [11,12]. In fact, a model based on a flattened inclusion may be a much better represen­
tation of a natural fault, although the details of time-dependent response can thus far be
addressed with some precision only for spherical inclusions.

Specifying roo and the stress-strain relations for the inclusion and its surroundings enables
one to determine the state (rine, yinc) within the inclusion by use of the Eshelby relation of eqn
(38) as demonstrated in Fig. 3(a). As roo is increased the point of contact of the Eshelby line
with the inclusion stress-strain curve reaches point I at which the slope is - JL/~, and the
Eshelby line is tangent to the curve. This is an instability point. Beyond it no quasi-static
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solution exists, and hence point I marks the onset of a dynamic runaway instability. The
Eshelby line is, of course, analogous to the unloading characteristic of a testing apparatus; low
{; values correspond to a stiff apparatus, high values to a flexible apparatus.

The failure of laboratory rock systems is often discussed in these terms (e.g. Jaeger and
Cook [19]). Stuart[2l] represents an existing fault zone by a one-dimensional weakened
non-linear strain softening layer situated between two thicker linear elastic layers subjected to
shear displacements at their outer boundaries. While not showing a graphical construction in
the form of Fig. 3, he arrives at an equivalent characterization of the instability point in terms
of the unloading stiffness of the surroundings. Further, as Rice[20} noted, the same represen­
tation of instability is valid when the inclusion does not represent a weakened zone, but rather a
zone that has lagged the surrounding material in adjustment to tectonic loading so that it
presently sustains a higher stress than the remote surroundings. This could, for example,
represent a "seismic gap" zone, and the Eshelby line may be used just as before in determining
the state within the inclusion (see Fig. 3b). Note that the inclusion stress-strain curve can lie on
the negative side of the y axis since the inclusion is misfitting and the zero of yinC corresponds
to the strain into which the inclusion would have to be deformed to just fit into the undistorted
surroundings.

The presence of an infiltrating pore fluid modifies the description of failure in Fig. 3 in two
ways. The first of these is associated with the time dependent response in the material
surrounding the weakened zone and the second with dilatant, pressure-sensitive response of the
weakened zone material. For stress alterations which are rapid by comparison to diffusion
times, the surroundings respond in an undrained rather than drained fashion. Consequently the
response is elastically stiffer as is evident by replacing the parameter {; in eqn (38), which should
now be regarded as relating increments of T'S and y's, by its undrained value which is

for a spherical inclusion. This is always lower than the drained value and leads to a steeper
"unloading" slope as illustrated by the dashed line through I in Fig. 3(a). (For example, if
11=0.2 and lIu 004, we find {; == 1 and (;u = 0.8 so that there is a 25% increase in slope). The
stiffness ratio {/{;u is tabulated for various inclusion shapes by Rice[20] as a function of crack
density in the surrounding rock, on the basis of dilute concentration estimates for the effect of
microcracks on drained and undrained elastic properties.

Because of this increase in stiffness of the surroundings, for rapid as compared with slow
stress alterations, instantaneous failure will not occur at point l. The system is instead stabilized
transiently by the pore fluid, although it becomes "self-driving" in the sense that, even if y~ is
held constant, yinC continues to increase on a time scale controlled by fluid diffusion. Ultimate
dynamic instability results when (and, indeed, if) yinc has increased enough for the softening
slope to fall to fJ-/{;u. This failure process is goverened by the following non-linear integral
equation based on eqn (35):

yinc(t) - y"'(t) = 1.J' H(t - t')[i"'(t') - iine(t')Jdt',
fJ- -~

where yOO = 1''''/P. and where Tine may be expressed as a function of yinc as, e.g. in the plot of Fig.
3(a). Of course, the same discussion applies for the seismic gap model of Fig. 3(b).

In the context of earth faulting 1'00 increases very slowly with time through large scale
tectonic processes. Thus it is normally to be expected that, except for inclusion states in the
near vicinity of point I, the response of the system should be very nearly drained. This is so
even if pore pressures considerably above hydrostatic should persist over a large region
including the inhomogeneity, for these may continuously equilibrate within the region, with the
effect only of raising the reference pressure with respect to which the alterations. denoted
herein by p, take place. Then as point I is passed subsequent deformation of the system is
self-driving. The ensuing rupture process is a potential source of detectable earthquake
precursors. In particular. our considerations suggest a precursory period, comparable in
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duration to diffusive relaxation times (say, "" 0.1 a2j c from Fig. I), over which accelerating
deformation takes place within the soon to be faulted zone. Because deformation during this
period is much more rapid than large scale tectonic processes, it may be accompanied by
observable precursory effects, such as tilting and creeping of the ground surface at anomalously
high rates, changes in travel times of seismic waves as suggested in "dilatancy-diffusion"
models [5-7], and perhaps other effects. Rice [20] has given some approximate extimates of the
time scale involved in precursory processes of the kind described, based on a specific T vs T'
relation for the inclusion and on the replacement of the actual H(t) in the above integral
equation by that for a standard linear model with relaxation time of 0.1 a2jc. Although the
choice of material and geometric parameters is very uncertain, it does seem plausible from the
results that precursory periods arising from the mechanism described could have time scales
comparable to those of observed precursors (Scholz et at. [6]) to smaller earthquakes.

The second possible mode of pore fluid stabilization of a fault zone is complementary to that
just discussed and arises because of the tendency for rock, at least in initially coherent
laboratory specimens, to exhibit dilatant deformation as it is sheared. When the rock is
fluid-infiltrated and when the time scale of stress alterations does not allow full drainage by
diffusion, pine is decreased relative to poco This serves to increase the Terzaghi effective
compressive stresses within the weakened zone, and hence strengthens the zone in its
resistance to shear. The phenomenon is referred to as "dilatant hardening." A preliminary
analysis has been given by Rudnicki[13] based on expressions such as eqns (36)-(38) im­
plemented with a coupling between deformation-induced pore-pressure alterations and pres­
sure-sensitive dilatant constitutive descriptions in the manner of Rice [I8]. Like the first effect
discussed, dilatant strengthening is also expected to become important only in the vicinity of
point I in Fig. 3, and to have similar effects in stabilizing the rock against instantaneous failure,
giving rise to a precursory period of accelerating but initially quasi-static deformation.

Both of these possible stabilizing effects of the pore fluid need to be more fully studied. We
have given a basic formulation for doing so here, through the Eshelby relations given as eqns
(35)-(37). It is clear, however, that the evolution of the rupture process will depend strongly on
features of the inelastic constitutive response of the weakened zone which are themselves
not well understood, and that predictions may be very much affected by the shape of such
zones, which are likely to be more flattened than spherical.
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APPENDIX
We write h(t) for the function f(a,tl and outline here the direct inversion of

where q = a(slc)'12, by the Bromwich integral

If'h(t) = -2' h(s)e"ds,
1T1 Br

where the integration is along AB in Fig. 4. It is convenient to let z = sa'ic (= q') and () = ctla' so that

--'1--8

z plane

c ,--u--~o'"

E

€

Fig. 4. Contour for inversion of transform.

The branch cut for ZI12 is taken along the negative real axis. The bracketed term in the denominator of the integrand
vanishes when Z112 = - 31//2 ± i(l21/ - 91/2) 112/2, but because these roots have negative real parts. the corresponding values
of z do not fall in the z-plane with the branch cut as just described. Thus the integrand is analytic within the closed contour
ABCDEFA, and by Cauchy's integral theorem [16] it may be written

1 f If' "-2. (...}dz = h(() +~ h(z)e dz =0,
1TI ... 11"1 BCDEFA

where ht()1 is the contribution from AB. Setting 2 = Re'~ l)n Be and AF and letting R~ x demonstrates that there is also
no contribution from these segments. If we let z = €e;~ on DE and take the limit € .... 0, this integral contributes - I. On CD
we set z = uem and on EF. z = ue-i~ so that the branch line integrals become

1 (X { 1+ iu 1/2 }.
:;;: Jo 1m u[u _ 31/(1 + iU'12)] eW'du.

Thus. the formula for h(() becomes

where we have set u = X' in the integral. The curves in Figs. I and 2 have been calculated by numerical evaluation of this
integral.


